

CMSIS-DSP

Revision: 1.0

Implement classical machine learning
with Arm CMSIS-DSP libraries

Non-Confidential Issue 1.0
Copyright © 2019-2020 Arm Limited (or its affiliates).
All rights reserved.

ID: 102052

CMSIS-DSP Classical ML ID: 102052
Issue 1.0

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 31

CMSIS-DSP

Classical ML

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

 1.0 28/02/2020 Non-confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information for the purposes of determining whether implementations
infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade
secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed

CMSIS-DSP Classical ML ID: 102052
Issue 1.0

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 31

written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. Please follow Arm's
trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2020 (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject
to license restrictions in accordance with the terms of the agreement entered into by Arm and the
party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Web Address

33Thttp://www.arm.com 33T

http://www.arm.com/company/policies/trademarks
http://www.arm.com/

CMSIS-DSP Classical ML
ID: 102052

Issue 1.0

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 31

Contents

1 Overview ... 5

1.1 Before you begin .. 6

2 What is a Support Vector Machine? .. 7

2.1 The linear classifier ... 9

2.2 Polynomial classifier .. 9

2.3 Radial basis function .. 9

2.4 Sigmoid ... 10

3 Train an SVM classifier with scikit-learn .. 11

4 Implement your SVM with CMSIS-DSP .. 16

5 What is a Bayesian estimator? ... 19

6 Train your Bayesian estimator with scikit-learn .. 21

7 Implement your Bayesian estimator with CMSIS-DSP .. 24

8 What is clustering? .. 26

9 Use CMSIS-DSP distance functions ... 27

10 Miscellaneous new CMSIS-DSP functions ... 28

11 Related information ... 30

12 Next steps .. 31

CMSIS-DSP Classical ML ID: 102052
Issue 1.0

Overview

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 31

1 Overview
Typically, when developers talk about Machine Learning (ML), they refer to Neural Networks
(NNs). The great advantage of neural networks is that you do not need to be a domain expert
and can quickly get a working solution. The drawbacks of neural networks are that they often
require numerous memory and cycles, and that it is difficult to explain how they have reached
their conclusion.

The field of machine learning includes technologies other than neural networks. Those other
technologies might have been used under a different name, for example statistical machine
learning. In this guide, we use the name classical machine learning to refer to the use of those
other technologies in the CMSIS-DSP open-source libraries.

The CMSIS-DSP library is a rich collection of DSP functions that Arm has optimized for various
Arm Cortex-M processors, for example the Cortex-M4, Cortex-M7, Cortex-M33, Cortex-M35,
and the Cortex-M55 processors. The Arm Developer website includes more information and
supporting resources for these processors.

CMSIS-DSP is widely used in the industry, and enables optimized C code generation from
various third-party tools. Arm has recently added new functions to the CMSIS-DSP library for
classical ML, including Support Vector Machine (SVM), naive gaussian Bayes classifier and
distances for clustering.

This guide explains how to train the SVM and Bayes classifiers in Python, how to dump the
parameters, and how to use the dumped parameters in CMSIS-DSP. It also explains how the
distance functions can be used for building clustering algorithms.

These classifiers can be used for anomaly detection, sound classification, and image recognition.
They will require the use of smart features, for example the output of a signal processing chain,
an understanding of the domain, and will work with fewer classes than neural networks.

The classical ML functions provided in CMSIS-DSP are only available with float32.

https://developer.arm.com/architectures/instruction-sets/dsp-extensions/dsp-for-cortex-m

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Overview

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 31

1.1 Before you begin
To complete this guide, you should know how to build CMSIS-DSP.

You also need to have the following resources installed:

• A copy of CMSIS-DSP

• Python 3 with the scikit-learn package.

If you want to display pictures, you should also install matplotlib in Python.

Note: The new classical ML functions are not included by default in Arm Keil MDK or Arm
Development Studio projects. To use those functions, you will have to rebuild the library and
include them.

The new functions are contained in the following CMSIS-DSP folders:

• SVMFunctions

• BayesFunctions

• DistanceFunctions

• SupportFunctions

• StatisticsFunctions

https://github.com/ARM-software/CMSIS_5
https://scikit-learn.org/stable/
https://matplotlib.org/

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Support Vector Machine?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 31

2 What is a Support Vector
Machine?
The idea of a Support Vector Machine (SVM) is simple: To separate two clusters of points using
a line, as you can see in the following image. The black line is separating cluster B from cluster A:

Figure 1: Simple linear SVM classifier

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Support Vector Machine?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 31

The SVM classifier is a binary classifier. There are only two classes. In practice the points are
not often points in a plane. Instead the points are feature vectors in a higher-dimensional space
and therefore the line is a hyperplane.

Also, there is no reason for the two clusters of points to be separable with a hyperplane, as you
can see in the following image:

Figure 2: Two clusters of points: Cluster A and Cluster B

Cluster A and B cannot be separated by a plane. To solve this issue, SVM algorithms introduce
nonlinear transformations.

In CMSIS-DSP, four kinds of transformations are supported and therefore four kinds of SVM
classifiers are available. Those classifiers use vectors, the support vectors, and coefficients,
named dual coefficients, which are generated by the training process.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Support Vector Machine?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 31

2.1 The linear classifier
The linear prediction uses the following formula:

Support vectors xi and dual coefficients are generated during the training. The vector to be
classified is y. <x,y> is the scalar product between vectors x and y.

The sign of this expression is used to classify the vector y as belonging to class A or B.

2.2 Polynomial classifier
The polynomial classifier uses the following formula:

This formula is more complex than the one for the linear classifier. Several new parameters are
generated during the training:

• Gamma

• coef0

• The degree d of the polynomial

2.3 Radial basis function
The radial basis function classifier uses the following formula:

Instead of using a scalar product, Euclidean norm is used. A radial basis function is a function
with a value that depends on the distance to a fixed reference point: In this case, the distance
between xi and the value to be classified y.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Support Vector Machine?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 31

2.4 Sigmoid
The sigmoid classifier uses the following formula:

This formula is like the polynomial formula, but instead of computing the power of the
expression, tanh is used.

Because the polynomial SVM is the SVM classifier that requires the most parameters, we use
the polynomial SVM as an example in this guide. You will learn how to train the polynomial
classifier in Python and how to dump the parameters to use the trained classifier in CMSIS-
DSP.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train an SVM classifier with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 31

3 Train an SVM classifier with
scikit-learn
In this section of the guide, we focus on how to train an SVM classifier with scikit-learn and how
to dump the parameters for use with CMSIS-DSP. The data generation and visualization parts
of this activity are beyond the scope of this guide.

The code below can be found in the CMSIS-DSP library:
CMSIS/DSP/Examples/ARM/arm_svm_example/train.py

You can run this example to reproduce the results of this guide, so that you can generate the
data, train the classifier and display some pictures.

Let's look at the parts of this script that correspond to the training and dumping of parameters.

The training of the SVM classifier relies on the scikit-learn library. So, we must import svm from
the sklearn module.

Training requires some data. The random, numpy, and math Python modules are imported for
the data generation part. More modules are required for the graphic visualization. This is
described in the train.py file.

The following Python code loads the required modules:

from sklearn import svm

import random

import numpy as np

import math

The data is made of two clusters of 100 points. The first cluster is a ball that is centered around
the origin. The second cluster has the shape of an annulus around the origin and the previous
ball.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train an SVM classifier with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 31

This image shows what those clusters of points look like:

Figure 3: Two clusters of points that are not linearly separable

The cluster of points were generated with the following Python code. This code generates the
random points and prepares the data for the training of the classifier. The data is an array of
points and an array of corresponding classes: X_train and Y_train

The yellow points correspond to class 0 and the blue points correspond to class 1.

NBVECS = 100

VECDIM = 2

ballRadius = 0.5

x = ballRadius * np.random.randn(NBVECS, 2)

angle = 2.0 * math.pi * np.random.randn(1, NBVECS)

radius = 3.0 + 0.1 * np.random.randn(1, NBVECS)

xa = np.zeros((NBVECS,2))

xa[:, 0] = radius * np.cos(angle)

xa[:, 1] = radius * np.sin(angle)

X_train = np.concatenate((x, xa))

Y_train = np.concatenate((np.zeros(NBVECS), np.ones(NBVECS)))

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train an SVM classifier with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 31

The following two lines create and train a polynomial SVM classifier using the data that we just
defined:

clf = svm.SVC(kernel='poly', gamma='auto', coef0=1.1)

clf.fit(X_train, Y_train)

You can see the result of the training in the following image:

Figure 4: Polynomial SVM frontier separating two clusters of points

The solid line represents the separation between the two classes, as the SVM classifier learned.

The larger red points on the image are two test points that are used to check the classifier.

The red point near the center of the image is inside class 0. The red point near the edge of the
image corresponds to class 1.

The following code creates the first point inside the center cluster, the class 0, and applies the
classifier. The result of predicted1 should be 0:

test1 = np.array([0.4,0.1])

test1 = test1.reshape(1,-1)

predicted1 = clf.predict(test1)

print(predicted1)

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train an SVM classifier with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 31

Now, we would like to use this trained classifier with the CMSIS-DSP. For this, the parameters
of the classifier must be dumped.

The CMSIS-DSP polynomial SVM uses the instance structure that is shown in the following
code. The parameters of this structure are needed by CMSIS-DSP and must be dumped from
the Python script:

typedef struct

{

 uint32_t nbOfSupportVectors; /**< Number of support vectors */

 uint32_t vectorDimension; /**< Dimension of vector space */

 float32_t intercept; /**< Intercept */

 const float32_t *dualCoefficients; /**< Dual coefficients */

 const float32_t *supportVectors; /**< Support vectors */

 const int32_t *classes; /**< The two SVM classes */

 int32_t degree; /**< Polynomial degree */

 float32_t coef0; /**< Polynomial constant */

 float32_t gamma; /**< Gamma factor */

} arm_svm_polynomial_instance_f32;

Other SVM classifiers, for example linear, sigmoid, and rbf, are used in a similar way but require
fewer parameters than the polynomial one. This means that, as soon as you know how to dump
parameters for the polynomial SVM, you can do the same for other kinds of SVM classifiers.

The following Python script accesses the parameters from the trained SVM classifier and prints
the values for use in CMSIS-DSP:

supportShape = clf.support_vectors_.shape

nbSupportVectors = supportShape[0]

vectorDimensions = supportShape[1]

print("nbSupportVectors = %d" % nbSupportVectors)

print("vectorDimensions = %d" % vectorDimensions)

print("degree = %d" % clf.degree)

print("coef0 = %f" % clf.coef0)

print("gamma = %f" % clf._gamma)

print("intercept = %f" % clf.intercept_)

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train an SVM classifier with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 31

Support vectors and dual coefficients are arrays in CMSIS-DSP. They can be printed with the
following code:

dualCoefs = clf.dual_coef_

dualCoefs = dualCoefs.reshape(nbSupportVectors)

supportVectors = clf.support_vectors_

supportVectors = supportVectors.reshape(nbSupportVectors * VECDIM)

print("Dual Coefs")

print(dualCoefs)

print("Support Vectors")

print(supportVectors)

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Implement your SVM with CMSIS-DSP

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 31

4 Implement your SVM with
CMSIS-DSP
Once the parameters of the SVM classifier have been dumped from the Python code, you can
use them in your C code with the CMSIS-DSP.

You can find the full code in
CMSIS/DSP/Examples/ARM/arm_svm_example/arm_svm_example_f32.c

This example reproduces the Python prediction by using the same test points. The following
code declares the instance variable that used by the SVM classifier and some lengths.

This instance variable will contain all the parameters which have been dumped from Python.

Some of those parameters are arrays so we must specify some sizes, for example, the number of
support vectors and their dimensions.

The following code defines the instance variable and some sizes, which will be useful later when
creating the arrays.

arm_svm_polynomial_instance_f32 params;

#define NB_SUPPORT_VECTORS 11

#define VECTOR_DIMENSION 2

The following code defines 2 arrays. The array of dual coefficients and support vectors is filled
with the values coming from Python. The classes 0 and 1 are also defined to ease the
comparison with Python:

const float32_t dualCoefficients[NB_SUPPORT_VECTORS] = {

 -0.01628988f, -0.0971605f,

 -0.02707579f, 0.0249406f,

 0.00223095f, 0.04117345f,

 0.0262687f, 0.00800358f,

 0.00581823f, 0.02346904f,

 0.00862162f}; /**< Dual coefficients */

const float32_t supportVectors[NB_SUPPORT_VECTORS*VECTOR_DIMENSION] = {

 1.2510991f, 0.47782799f,

 -0.32711859f, -1.49880648f,

 -0.08905047f, 1.31907242f,

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Implement your SVM with CMSIS-DSP

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 31

 1.14059333f, 2.63443767f,

 -2.62561524f, 1.02120701f,

 -1.2361353f, -2.53145187f,

 2.28308122f, -1.58185875f,

 2.73955981f, 0.35759327f,

 0.56662986f, 2.79702016f,

 -2.51380816f, 1.29295364f,

 -0.56658669f, -2.81944734f}; /**< Support vectors */

const int32_t classes[2] = {0,1};

The following code initializes the instance variable with all the parameters that come from
Python, for example, the lengths, the above arrays, and the intercept, degree, coef0 and gamma
parameters:

arm_svm_polynomial_init_f32(¶ms,

 NB_SUPPORT_VECTORS,

 VECTOR_DIMENSION,

 -1.661719f, /* Intercept */

 dualCoefficients,

 supportVectors,

 classes,

 3, /* degree */

 1.100000f, /* Coef0 */

 0.500000f /* Gamma */

);

Finally, for testing, an input vector is defined and classified using the polynomial SVM predictor.

The following code defines the input vector and applies the classifier:

in[0] = 0.4f;

in[1] = 0.1f;

arm_svm_polynomial_predict_f32(¶ms,

 in,

 &result);

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Implement your SVM with CMSIS-DSP

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 31

The input vector is a point. This point is defined to be in the center cluster, which corresponds
to class 0. This point has the same coordinates as the point which was used in the Python code
to test the classifier. So the result of the above code should be the class 0.

An SVM classifier is a binary classifier. If you want to work with more classes, you need to
create classifiers for each distinct pair of classes, and use a majority voting on the results to
select the final class.

For instance, in the following example from scikit-learn, SVM is used to recognize digits. With
ten digits, there are 45 pairs. This means that there are 45 SVM classifiers. Scikit-learn creates
them automatically using the strategy one-vs-one: each classed is compared with every other
class.

In this case, the extraction of the parameters is more complex because scikit-learn returns
matrixes containing parameters for all 45 of the classifiers. In CMSIS-DSP you need 45 instance
variables and you extract the values from the matrixes to initialize all those instance variables.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Bayesian estimator?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 31

5 What is a Bayesian estimator?
An estimator is Bayesian if it uses the Bayes theorem to predict the most likely class of some
observed data.

Because the class of data is an unknown parameter and not a random variable, it is not possible
to express the probability of that class using the standard concept of probability.

Bayesian probability uses a different notion of probability which quantifies our state of
knowledge about the truth of an assertion.

With standard probability, the conditional probability of some random variable X, assuming
some value of an unknown parameter theta, cannot be inverted.

You can write the following formula because X is a random variable:

But you cannot write the following formula, because theta is not a random variable, but is an
unknown parameter:

Bayesian probability allows you to express the probability that some logical assertions are true.

This means that there is a symmetry in the conditional probability of A assuming B which is
expressed with following formula:

A and B are both logical assertions. Therefore, the previous formula can be inverted using the
Bayes theorem to get the probability of B assuming A.

If A and B are the observed data D and the class of the data C, the Bayes theorem allows you to
relate what you know about the data and the classes.

Bayes theorem allows you to compute the most likely class for some observed data, if you know
something about how the data depends on the classes.

The probability of a class assuming some observed data is expressed as P(C|D). The probability
of the data assuming some class C is expressed as P(D|C).

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is a Bayesian estimator?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 31

The Bayes theorem is shown here:

For the naive gaussian Bayesian classifier, the data, D, is a vector of samples. We assume that
the samples are independent and that they follow a Gaussian distribution.

The parameters of the gaussian for each class will be computed during the training of the
Python classifier. For each gaussian, the mean and standard deviation is computed.

Also, if some information about the class is available, and some classes are more or less likely,
then this knowledge is encoded in the prior probability P(C).

The Python code also returns a value epsilon, which is needed for numerical accuracy.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train your Bayesian estimator with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 31

6 Train your Bayesian estimator
with scikit-learn
In this section of the guide, we describe how to train the Bayesian classifier with scikit-learn and
how to dump the parameters for use with CMSIS-DSP. The data generation and visualization
parts of this activity are beyond the scope of this guide.

The file CMSIS/DSP/Examples/ARM/arm_bayes_example/train.py contains all the code for this
example.

You can run this file to reproduce the results of this guide, and to generate the data and train
the classifier.

In the example, there are three clusters: A, B, and C. The samples in each cluster are generated
using a gaussian distribution.

The following image displays the three clusters of points:

Figure 5: Three clusters of points: A, B, and C

The training of the Bayesian classifier is relying on the scikit-learn library. So, we must import
GaussianNB from the sklearn.naive_bayes module.

Training requires some data. The random, numpy, and math Python modules are imported for
the data generation part of this exercise.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train your Bayesian estimator with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 31

The following Python code loads the required modules:

from sklearn.naive_bayes import GaussianNB

import random

import numpy as np

import math

The following code generates three clusters of points:

3 cluster of points are generated

ballRadius = 1.0

x1 = [1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM)

x2 = [-1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM)

x3 = [0, -3] + ballRadius * np.random.randn(NBVECS,VECDIM)

All the points and their classes are concatenated for the training.

Cluster A is class 0, cluster B is class 1, and cluster C is class 2.

The following code creates the array of inputs by concatenating the three clusters. This code
also creates the array of outputs by concatenating the class numbers:

All points are concatenated

X_train=np.concatenate((x1,x2,x3))

The classes are 0,1 and 2.

Y_train=np.concatenate((np.zeros(NBVECS),np.ones(NBVECS),2*np.ones(NBVECS)))

The following code trains the Gaussian Naïve Bayes classifier on the input arrays that were just
created:

gnb = GaussianNB()

gnb.fit(X_train, Y_train)

We can check the result by classifying a point in each cluster.

The following code checks that a point in cluster A is recognized as being in cluster A. The class
number of cluster A is 0. This means that y_pred should be 0 when this code is executed:

y_pred = gnb.predict([[1.5,1.0]])

print(y_pred)

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Train your Bayesian estimator with scikit-learn

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 31

Now, we want to use this trained classifier with the CMSIS-DSP. For this, the parameters of the
classifier must be dumped.

The CMSIS-DSP Bayesian classifier uses the instance structure that is shown in the following
code. The parameters of this structure are needed by CMSIS-DSP and must be dumped from
the Python script:

typedef struct

{

 uint32_t vectorDimension; /**< Dimension of vector space */

 uint32_t numberOfClasses; /**< Number of different classes */

 const float32_t *theta; /**< Mean values for the Gaussians */

 const float32_t *sigma; /**< Variances for the Gaussians */

 const float32_t *classPriors; /**< Class prior probabilities */

 float32_t epsilon; /**< Additive value to variances */

} arm_gaussian_naive_bayes_instance_f32;

The parameters that are required can be dumped with following Python code:

print("Parameters")

Gaussian averages

print("Theta = ",list(np.reshape(gnb.theta_,np.size(gnb.theta_))))

Gaussian variances

print("Sigma = ",list(np.reshape(gnb.sigma_,np.size(gnb.sigma_))))

Class priors

print("Prior = ",list(np.reshape(gnb.class_prior_,np.size(gnb.class_prior_))))

print("Epsilon = ",gnb.epsilon_)

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Implement your Bayesian estimator with CMSIS-DSP

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 31

7 Implement your Bayesian
estimator with CMSIS-DSP
Once the parameters of the Bayesian classifier have been dumped from the Python code, you
can use them in your C code with the CMSIS-DSP.

You can find the full code in
CMSIS/DSP/Examples/ARM/arm_bayes_example/arm_bayes_example_f32.c

This example reproduces the Python prediction by using the same test points.

The following code declares the instance variable that is used by the Bayesian classifier and
some lengths.

This instance variable contains all the parameters which have been dumped from Python.

Some of those parameters are arrays. This means that we must specify their sizes, using the
number of classes and the vector dimensions:

arm_gaussian_naive_bayes_instance_f32 S;

#define NB_OF_CLASSES 3

#define VECTOR_DIMENSION 2

Three arrays of parameters are required:

• Gaussian averages (theta)

• Gaussian variances (sigma)

• The class prior probabilities

The following code defines the content of the arrays. The values are dumped from Python:

const float32_t theta[NB_OF_CLASSES*VECTOR_DIMENSION] = {

 1.4539529436590528f, 0.8722776016801852f,

 -1.5267934452462473f, 0.903204577814203f,

 -0.15338006360932258f, -2.9997913665803964f

}; /**< Mean values for the Gaussians */

const float32_t sigma[NB_OF_CLASSES*VECTOR_DIMENSION] = {

 1.0063470889514925f, 0.9038018246524426f,

 1.0224479953244736f, 0.7768764290432544f,

 1.1217662403241206f, 1.2303890106020325f

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Implement your Bayesian estimator with CMSIS-DSP

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 31

}; /**< Variances for the Gaussians */

const float32_t classPriors[NB_OF_CLASSES] = {

 0.3333333333333333f, 0.3333333333333333f, 0.3333333333333333f

}; /**< Class prior probabilities */

The following code fills the instance variable fields with the arrays, some sizes, and the epsilon
value coming from Python.

S.vectorDimension = VECTOR_DIMENSION;

S.numberOfClasses = NB_OF_CLASSES;

S.theta = theta;

S.sigma = sigma;

S.classPriors = classPriors;

S.epsilon=4.328939296523643e-09;

Once the data structure is initialized, it is possible to use the classifier. The classifier estimates
the probability of each class. However, this classifier is not a good estimator. This means that
the values of the probabilities should not be used, except to find the max probability which gives
the most likely class for the sample.

The following code tests the classifier on a sample point that is inside cluster A corresponding
to class 0.

To find the class, the code looks for the maximum probability, which is giving the most likely
class.

in[0] = 1.5f;

in[1] = 1.0f;

arm_gaussian_naive_bayes_predict_f32(&S, in, result);

arm_max_f32(result,

 NB_OF_CLASSES,

 &maxProba,

 &index);

printf("Class = %d\n",index);

CMSIS-DSP Classical ML ID: 102052
Version 1.0

What is clustering?

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 31

8 What is clustering?
Clustering Is an attempt to partition a set of points into different clusters of similar points. To
be able to do this, we need a method to measure how close or similar the points are. Many
clustering algorithms rely on a distance function for that purpose.

The following figure shows the result of a clustering algorithm using three different distance
functions, and trying to identify five different clusters from uniformly distributed points.

Figure 6: Clusters that depend on the choice of the distance function

CMSIS-DSP does not provide any clustering algorithm. Instead CMSIS-DSP provides the
distance functions which can be used to build clustering algorithms.

Building a clustering classifier using distances requires a way to quickly find the distance
between one point and other points. Strategies for this are beyond the scope of the CMSIS-
DSP library.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Use CMSIS-DSP distance functions

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 31

9 Use CMSIS-DSP distance
functions
CMSIS-DSP provides most of the distance functions which are generally used in clustering
algorithms. It includes distance functions for float but also for booleans.

All distance functions in the CMSIS-DSP have a similar API. Let's use the Manhattan distance,
also known as the city block distance, as an example.

The API of the city block distance is described in the following code:

float32_t arm_cityblock_distance_f32(const float32_t *pA,

 const float32_t *pB,

 uint32_t blockSize);

This function computes the distance between two vectors, pA and pB, of the dimension
blockSize.

The folder CMSIS/DSP/DistanceFunctions also contains functions which are not really
distances from a mathematical point of view. For instance, the cosine distance is a measure of
similarity.

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Miscellaneous new CMSIS-DSP functions

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 31

10 Miscellaneous new CMSIS-DSP
functions
The functions that are listed in this section of the guide are useful if you are building more
complex Classical-ML algorithms.

CMSIS-DSP introduces two new functions that are useful if you are computing weighted sums
of points or scalars.

arm_barycenter_f32 is a utility function that computes the barycenter of some weighted points.

arm_weighted_sum_f32 works with scalars and computes the weighted sum of those scalars.

The following code describes the API of those functions:

void arm_barycenter_f32(const float32_t *in,

 const float32_t *weights,

 float32_t *out,

 uint32_t nbVectors,

 uint32_t vecDim);

float32_t arm_weighted_sum_f32(const float32_t *in,

 const float32_t *weigths,

 uint32_t blockSize);

CMSIS-DSP introduces two new functions that are related to entropy.

arm_entropy_f32 computes the entropy of a probability distribution pSrcA.

arm_kullback_leibler_f32 computes the Kullback Leibler divergence between two probability
distributions.

The following code describes the API of those functions:

float32_t arm_entropy_f32(const float32_t * pSrcA,

 uint32_t blockSize);

float32_t arm_kullback_leibler_f32(const float32_t * pSrcA,

 const float32_t * pSrcB,

 uint32_t blockSize);

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Miscellaneous new CMSIS-DSP functions

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 31

When working with Gaussian probability, rounding issues can become a problem. This is
because the dynamic of the values can be large. Instead, you can work with the log of the values.

arm_logsumexp_f32 computes the sum of probabilities represented by their log. This sum is
computed considering accuracy issues.

arm_logsumexp_dot_prod_f32 computes the dot product when the values are represented by
their log.

When working with conditional probabilities, represented as tables, you often need to compute
dot products between the row and the columns of those matrixes. If the probabilities are
represented by their log values you'll need to use a function like arm_logsumexp_dot_prod_f32.

The following code describes the API of those functions:

float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA,

 const float32_t * pSrcB,

 uint32_t blockSize,

 float32_t *pTmpBuffer);

float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize);

CMSIS-DSP Classical ML ID: 102052
Version 1.0

Related information

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 31

11 Related information
Here are some resources related to material in this guide:

• Arm community - Ask development questions, and find articles and blogs on specific topics
from Arm experts.

• CMSIS-DSP library - a rich collection of DSP functions that Arm has optimized for various
Arm Cortex-M processors, for example the Cortex-M4, Cortex-M7, Cortex-M33, and
Cortex-M35P processors.

• Source code for the SVM example in this guide

• Source code for the Bayes classifier example in this guide

• DSP for Cortex-M - Find more information about the signal processing capabilities of Arm
Cortex-M processors and the CMSIS-DSP library

• Learn more about clustering.

• Scikit-learn resources:

o SVM Classifier

o Gaussian Naïve Bayes Classifier

o Distance functions

o Digit classification example

• The Elements of Statistical Learning - A general introduction to machine learning. The
PDF of this book is freely available.

https://community.arm.com/
https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/DSP
https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/DSP/Examples/ARM/arm_svm_example
https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/DSP/Examples/ARM/arm_bayes_example
https://developer.arm.com/architectures/instruction-sets/dsp-extensions/dsp-for-cortex-m
https://en.wikipedia.org/wiki/Cluster_analysis
https://scikit-learn.org/stable/modules/svm.html#svm-classification
https://scikit-learn.org/stable/modules/svm.html#svm-classification
https://scikit-learn.org/stable/modules/svm.html#svm-classification
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://web.stanford.edu/%7Ehastie/ElemStatLearn/

CMSIS-DSP Classical ML ID: 102052
Version 1.0
Next steps

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 31

12 Next steps
This guide has explained how to implement some classical machine learning classifiers using the
CMSIS-DSP. The guide has shown how to train the classifiers in Python, how to dump the
parameters, and how to use the dumped parameters in CMSIS-DSP.

If you want to explore these concepts further, Kaggle has some useful applications of those
classifiers.

Thank you for reading our guide on implementing classical ML classifiers with CMSIS-DSP. We
look forward to seeing what you can create with CMSIS-DSP.

If you have any questions when using CMSIS-DSP, create a GitHub issue.

https://www.kaggle.com/
https://github.com/ARM-software/CMSIS_5/issues

	1 Overview
	1.1 Before you begin

	2 What is a Support Vector Machine?
	2.1 The linear classifier
	2.2 Polynomial classifier
	2.3 Radial basis function
	2.4 Sigmoid

	3 Train an SVM classifier with scikit-learn
	4 Implement your SVM with CMSIS-DSP
	5 What is a Bayesian estimator?
	6 Train your Bayesian estimator with scikit-learn
	7 Implement your Bayesian estimator with CMSIS-DSP
	8 What is clustering?
	9 Use CMSIS-DSP distance functions
	10 Miscellaneous new CMSIS-DSP functions
	11 Related information
	12 Next steps

